Нахождение центра тяжести своего тела. Определение центра тяжести плоских фигур Неправильная фигура с определением центра тяжести

Тема относительно проста для усвоения, однако крайне важна при изучении курса сопротивления материалов. Главное внимание здесь необходимо обратить на решение задач как с плоскими и геометрическими фигурами, так и со стандартными прокатными профилями.

Вопросы для самоконтроля

1. Что такое центр параллельных сил?

Центр параллельных сил есть точка, че­рез которую проходит линия равнодействую­щей системы параллельных сил, прило­женных в заданных точках, при любом изменении на­правления этих сил в простран­стве.

2. Как найти координаты центра параллельных сил?

Для определения координат центра параллельных сил воспользуемся теоремой Вариньона.

Относительно оси x

M x (R) = ΣM x (F k) , - y C R = Σy kFk и y C = Σy kFk /Σ Fk .

Относительно оси y

M y (R) = ΣM y (F k) , - x C R = Σx kFk и x C = Σx kFk /Σ Fk .

Чтобы определить координату z C , повернем все силы на 90° так, чтобы они стали параллельны оси y (рисунок 1.5, б). Тогда

M z (R) = ΣM z (F k) , - z C R = Σz kFk и z C = Σz kFk /Σ Fk .

Следовательно, формула для определения радиус-вектора центра параллельных сил принимает вид

r C = Σr kFk /Σ Fk .

3. Что такое центр тяжести тела?

Центр Тяжести- неизменно связанная с твердым телом точка, через которую проходит равнодействующая сил тяжести, действующих на частицы этого тела при любом положении тела в пространстве. У однородного тела, имеющего центр симметрии (круг, шар, куб и т. д.), центр тяжести находится в центре симметрии тела. Положение центра тяжести твердого тела совпадает с положением его центра масс.

4. Как найти центр тяжести прямоугольника, треугольника, круга?

Для нахождения центра тяжести треугольника, необходимо нарисовать треугольник – фигуру, состоящую из трех отрезков, соединенных между собой в трех точках. Перед тем, как найти центр тяжести фигуры, необходимо, используя линейку, измерить длину одной стороны треугольника. В середине стороны поставьте отметку, после чего противоположную вершину и середину отрезка соедините линией, которая называется медианой. Тот же самый алгоритм повторите со второй стороной треугольника, а затем и с третьей. Результатом вашей работы станут три медианы, которые пересекаются в одной точке, которая будет являться центром тяжести треугольника. Если необходимо определить центр тяжести круглого диска однородной структуры, то для начала найдите точку пересечения диаметров круга. Она и будет центром тяжести данного тела. Рассматривая такие фигуры, как шар, обруч и однородный прямоугольный параллелепипед, можно с уверенностью сказать, что центр тяжести обруча будет находиться в центре фигуры, но вне ее точек, центр тяжести шара - геометрический центр сферы, и в последнем случае, центром тяжестью считается пересечение диагоналей прямоугольногопараллелепипеда.

5. Как найти координаты центра тяжести плоского составного сечения?

Метод разбиения: если плоскую фигуру можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всей фигуры опредляются по формулам:

Х C = ( s k x k) / S; Y C = ( s k y k) / S,

где x k , y k - координаты центров тяжести частей фигуры;

s k - их площади;

S = s k - площадь всей фигуры.

6. Центр тяжести

1. В каком случае для определения центра тяжести достаточно определить одну координату расчетным путем?

В первом случае для определения центра тяжести достаточно определить одну координату Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.) можно представить в виде двух плоских фигур с площадями S 1 и S 2 (S = S 1 + S 2 ). Центры тяжести этих фигур находятся в точках C 1 (x 1 , y 1) и C 2 (x 2 , y 2) . Тогда координаты центра тяжести тела равны

Так как центры фигур лежат на оси ординат (х = 0), то находим только координату Ус .

2 Как учитывается площадь отверстия в фигуре 4 в формуле для определения центра тяжести фигуры?

Метод отрицательных масс

Этот метод заключается в том, что тело, имеющее свободные полости, считают сплошным, а массу свободных полостей – отрицательной. Вид формул для определения координат центра тяжести тела при этом не меняется.

Таким образом, при определении центра тяжести тела, имеющего свободные полости, следует применять метод разбиения, но считать массу полостей отрицательной.

иметь представление о центре параллельных сил и его свойствах;

знать формулы для определения координат центра тяжести плоских фигур;

уметь определять координаты центра тяжести плоских фигур простых геометрических фигур и стандартных прокатных профилей.

ЭЛЕМЕНТЫ КИНЕМАТИКИ И ДИНАМИКИ
Изучив кинематику точки, обратите внимание на то, что прямолинейное движе­ние точки как неравномерное, так и равномерное всегда характеризуется наличием нормального (центростремительного) ускорения. При поступательном движении тела (характеризуемом движением любой его точки) применимы все формулы кинемати­ки точки. Формулы для определения угловых величин тела, вращающегося вокруг неподвижной оси, имеют полную смысловую аналогию с формулами для определе­ния соответствующих линейных величин поступательно движущегося тела.

Тема 1.7. Кинематика точки
При изучении темы обратите внимание на основные понятия кинематики: ускорение, скорость, путь, расстояние.

Вопросы для самоконтроля

1. В чем заключается относительность понятий покоя и движения?

Механическое движение -это изменение движения тела, или (его частей) в пространстве относительно др. тел с течением времени. Полет брошенного камня, вращение колеса- примеры механического движения.

2. Дайте определение основных понятий кинематики: траектории, расстоянию, пути, скорости, ускорению, времени.

Скорость – это кинематическая мера движения точки, характеризующая быстроту изменения ее положения в пространстве. Скорость является векторной величиной, т. е. она характеризуется не только модулем (скалярной составляющей), но и направлением в пространстве.

Как известно из физики, при равномерном движении скорость может быть определена длиной пути, пройденного за единицу времени: v = s/t = const (предполагается, что начало отсчета пути и времени совпадают). При прямолинейном движении скорость постоянна и по модулю, и по направлению, а ее вектор совпадает с траекторией.

Единица скорости в системе СИ определяется соотношением длина/время, т. е. м/с.

Ускорение есть кинематическая мера изменения скорости точки во времени. Другими словами - ускорение - это скорость изменения скорости.
Как и скорость, ускорение является величиной векторной, т. е. характеризуется не только модулем, но и направлением в пространстве.

При прямолинейном движении вектор скорости всегда совпадает с траекторией и поэтому вектор изменения скорости тоже совпадает с траекторией.

Из курса физики известно, что ускорение представляет собой изменение скорости в единицу времени. Если за небольшой промежуток времени Δt скорость точки изменилась на Δv, то среднее ускорение за данный промежуток времени составило: а ср = Δv/Δt.

Среднее ускорение не дает представление об истинной величине изменения скорости в каждый момент времени. При этом очевидно, что чем меньше рассматриваемый промежуток времени, во время которого произошло изменение скорости, тем ближе значение ускорения будет к истинному (мгновенному).
Отсюда определение: истинное (мгновенное) ускорение есть предел, к которому стремится среднее ускорение при Δt, стремящемся к нулю:

а = lim а ср при t→0 или lim Δv/Δt = dv/dt.

Учитывая, что v = ds/dt, получим: а = dv/dt = d 2 s/dt 2 .

Истинное ускорение в прямолинейном движении равно первой производной скорости или второй производной координаты (расстояния от начала отсчета перемещения) по времени. Единица ускорения - метр, деленный на секунду в квадрате (м/с 2).

Траектория - линия в пространстве, вдоль которой движется материальная точка.
Путь - это длина траектории. Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь – скалярная величина.

Расстояние определяет положение точки на ее траектории и отсчитывается от некоторого начала отсчета. Расстояние является алгебраической величиной, так как в зависимости от положения точки относительно начала отсчета и от принятого направления оси расстояний оно может быть и положительным, и отрицательным. В отличие от расстояния путь, пройденный точкой, всегда определяется положительным числом. Путь совпадает с абсолютным значением расстояния только в том случае, когда движение точки начинается от начала отсчета и совершается по траектории в одном направлении.

В общем случае движения точки путь равен сумме абсолютных значений пройденных точкой расстояний за данный промежуток времени:

3. Какими способами может быть задан закон движения точки?

1.Естественный способ задания движения точки.

При естественном способе задания движения предполагается определение параметров движения точки в подвижной системе отсчета, начало которой совпадает с движущейся точкой, а осями служат касательная, нормаль и бинормаль к траектории движения точки в каждом ее положении. Чтобы задать закон движения точки естественным способом необходимо:

1) знать траекторию движения;

2) установить начало отсчета на этой кривой;

3) установить положительное направление движения;

4) дать закон движения точки по этой кривой, т.е. выразить расстояние от начала отсчета до положения точки на кривой в данный момент времени ∪OM=S(t) .

2.Векторный способ задания движения точки

В этом случае положение точки на плоскости или в пространстве определяется вектором-функцией. Этот вектор откладывается от неподвижной точки, выбранной за начало отсчета, его конец определяет положение движущейся точки.

3.Координатный способ задания движения точки

В выбранной системе координат задаются координаты движущейся точки как функции от времени. В прямоугольной декартовой системе координат это будут уравнения:

4. Как направлен вектор истинной скорости точки при криволинейном движе­нии?

При неравномерном движении точки модуль ее скорости с течением времени меняется.
Представим себе точку, движение которой задано естественным способом уравнением s = f(t).

Если за небольшой промежуток времени Δt точка прошла путь Δs, то ее средняя скорость равна:

vср = Δs/Δt.

Средняя скорость не дает представления об истинной скорости в каждый данный момент времени (истинную скорость иначе называют мгновенной). Очевидно, что чем меньше промежуток времени, за который определяется средняя скорость, тем ближе ее значение будет к мгновенной скорости.

Истинная (мгновенная) скорость есть предел, к которому стремится средняя скорость при Δt, стремящемся к нулю:

v = lim v ср при t→0 или v = lim (Δs/Δt) = ds/dt.

Таким образом, числовое значение истинной скорости равно v = ds/dt.
Истинная (мгновенная) скорость при любом движении точки равна первой производной координаты (т. е. расстояния от начала отсчета перемещения) по времени.

При Δt стремящемся к нулю, Δs тоже стремится к нулю, и, как мы уже выяснили, вектор скорости будет направлен по касательной (т. е. совпадает с вектором истинной скорости v). Из этого следует, что предел вектора условной скорости v п, равный пределу отношения вектора перемещения точки к бесконечно малому промежутку времени, равен вектору истинной скорости точки.

5. Как направлены касательное и нормальное ускорения точки?

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0

Касательное ускорение в данной точке направлено по касательной к траектории движения точки; если движение ускоренное, то направление вектора касательного ускорения совпадает с направлением вектора скорости; если движение замедленное – то направление вектора касательного ускорения противоположно направлению вектора скорости.

6. Какое движение совершает точка, если касательное ускорение равно нулю, а нормальное не изменяется с течением времени?

Равномерное криволинейное движение характеризуется тем, что численное значение скорости постоянно (v = const ), скорость меняется лишь по направлению. В этом случае касательное ускорение равно нулю, так как v = const (рис.б),

а нормальное ускорение не равно нулю, так как r - конечная величина.

7. Как выглядят кинематические графики при равномерном и равнопеременном движении?

При равномерном движении тело за любые равные промежутки времени проходит равные пути. Для кинематического описания равномерного прямолинейного движения координатную ось OX удобно расположить по линии движения. Положение тела при равномерном движении определяется заданием одной координаты x . Вектор перемещения и вектор скорости всегда направлены параллельно координатной оси OX . Поэтому перемещение и скорость при прямолинейном движении можно спроецировать на ось OX и рассматривать их проекции как алгебраические величины.

При равномерном движении путь изменяется, согласно линейной зависимости . В координатах . Графиком является наклонная линия.


В результате изучения темы студент должен:

иметь представление о пространстве, времени, траектории; средней и истиной скорости;

знать способы задания движения точки; параметры движения точки по заданной траектории.

Конспект урока по физике 7 класс

Тема: Определение центра тяжести

Учитель физики МОУ Аргаяшская СОШ №2

Хидиятулина З.А.

Лабораторная работа:

«Определение центра тяжести плоской пластины»

Цель : нахождение центра тяжести плоской пластины.

Теоретическая часть:

Центр тяжести есть у всех тел. Центром тяжести тела называется точка, относительно которой суммарный момент сил тяжести, действующих на тело, равен нулю. Например, если подвесить предмет за его центр тяжести, то он останется в покое. То есть, его положение в пространстве не изменится (он не перевернётся вверх ногами или на бок). Почему одни тела опрокидываются, а другие — нет? Если из центра тяжести тела провести линию, перпендикулярную полу, то в случае, когда линия выходит за границы опоры тела, тело упадёт. Чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Например, центр тяжести знаменитой Пизанской башни расположен всего в двух метрах от середины её опоры. А падение случится лишь тогда, когда это отклонение составит около 14 метров. Центр тяжести тела человека находится примерно на 20,23 сантиметра ниже пупка. Воображаемая линия, проведённая отвесно из центра тяжести, проходит ровно между ступнями. У куклы-неваляшки секрет заключается также в центре тяжести тела. Её устойчивость объясняется тем, что центр тяжести у неваляшки находится в самом низу, она фактически стоит на нём. Условием сохранения равновесия тела является прохождение вертикальной оси его общего центра тяжести внутри площади опоры тела. Если вертикаль центра тяжести тела выходит из площади опоры, тело теряет равновесие и падает. Поэтому чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Площадь опоры при вертикальном положении человека ограничена тем пространством, которое находится под подошвами и между стопами. Центральная точка отвесной линии центра тяжести на стопе находится на 5 см впереди от пяточного бугра. Сагиттальный размер площади опоры всегда преобладает над фронтальным, поэтому и смещение отвесной линии центра тяжести легче происходит вправо и влево, чем назад, а особенно трудно — вперед. В связи с этим устойчивость на поворотах при быстром беге значительно меньше, чем в сагиттальном направлении (вперед или назад). Нога в обуви, особенно с широким каблуком и жесткой подошвой, устойчивее, чем без обуви, так как приобретает большую площадь опоры.

Практическая часть:

Цель работы: Используя предложенное оборудование, опытным путём найти положение центра тяжести двух фигур из картона и треугольника.

Оборудование: Штатив, плотный картон, треугольник из школьного набора, линейка, скотч, нить, карандаш..

Задание 1: Определите положение центра тяжести плоской фигуры произвольной формы

С помощью ножниц вырежьте из картона фигуру произвольной формы. Скотчем прикрепите к ней нить в точке А. Подвесьте фигуру за нить к лапке штатива. С помощью линейки и карандаша отметьте на картоне линию вертикали АВ.

Переместите точку крепления нити в положение С. Повторите описанные действия

Точка О пересечения линий АВ и CD даёт искомое положение центра тяжести фигуры.

Задание 2: Пользуясь только линейкой и карандашом, найдите положение центра тяжести плоской фигуры

С помощью карандаша и линейки разбейте фигуру на два прямоугольника. Построением найдите положения О1 и О2 их центров тяжести. Очевидно, что центр тяжести всей фигуры находится на линии О1О2

Разбейте фигуру на два прямоугольника другим способом. Построением найдите положения центров тяжести О3 и О4 каждого из них. Соедините точки О3 и О4 линией. Точка пересечения линий О1О2 и О3О4 определяет положение центра тяжести фигуры

Задание 2: Определите положение центра тяжести треугольника

С помощью скотча закрепите один из концов нити в вершине треугольника и подвесьте его к лапке штатива. С помощью линейки отметьте направление АВ линии действия силы тяжести (сделайте отметку на противоположной стороне треугольника)

Повторите аналогичную процедуру, подвесив треугольник за вершину С. На противоположной вершине С стороне треугольника сделайте отметку D .

С помощью скотча прикрепите к треугольнику отрезки нитей АВ и CD . Точка О их пересечения определяет положение центра тяжести треугольника. В данном случае центр тяжести фигуры находится вне пределов самого тела.

III . Решение качественных задач

1.С какой целью цирковые артисты при хождении по канату держат в руках тяжелые шесты?

2.Почему человек, несущий на спине тяжелый груз, наклоняется вперед?

3.Почему нельзя встать со стула, если не наклонить корпус вперед?

4.Почему подъемный кран не опрокидывается в сторону поднимаемого груза? Почему без груза кран не опрокидывается в сторону противовеса?

5.Почему у автомашин и велосипедов и т.п. тормоза лучше ставить на задние, а не на передние колеса?

6.Почему, грузовик нагруженный сеном легче переворачивается, чем тот же грузовик нагруженный снегом?

Перед тем, как найти центр тяжести простых фигур, таких которые обладают прямоугольной, круглой, шарообразной или цилиндрической, а также квадратной формой, необходимо знать, в какой точке находится центр симметрии конкретной фигуру. Поскольку в данных случаях, центр тяжести будет совпадать с центром симметрии.

Центр тяжести однородного стержня располагается в его геометрическом центре. Если необходимо определить центр тяжести круглого диска однородной структуры, то для начала найдите точку пересечения диаметров круга. Она и будет центром тяжести данного тела. Рассматривая такие фигуры, как шар, обруч и однородный прямоугольный параллелепипед, можно с уверенностью сказать, что центр тяжести обруча будет находиться в центре фигуры, но вне ее точек, центр тяжести шара - геометрический центр сферы, и в последнем случае, центром тяжестью считается пересечение диагоналей прямоугольного параллелепипеда.

Центр тяжести неоднородных тел

Чтобы найти координаты центра тяжести, как и сам центр тяжести неоднородного тела, необходимо разобраться, на каком отрезке данного тела располагается точка, в которой пересекаются все силы тяжести, действующие на фигуру, если ее переворачивать. На практике для нахождения такой точки подвешивают тело на нить, постепенно меняя точки прикрепления нити к телу. В том случае, когда тело находится в равновесии, то центр тяжести тела будет лежать на линии, которая совпадает с линией нити. В противном случае сила тяжести приводит тело в движение.

Возьмите карандаш и линейку, начертите вертикальные прямые, которые визуально будут совпадать с нитевыми направлениями (нити, закрепляемые в различных точках тела). Если форма тела достаточно сложная, то проведите несколько линий, которые будут пересекаться в одной точке. Она и станет центром тяжести для тела, над которым вы производили опыт.

Центр тяжести треугольника

Для нахождения центра тяжести треугольника, необходимо нарисовать треугольник – фигуру, состоящую из трех отрезков, соединенных между собой в трех точках. Перед тем, как найти центр тяжести фигуры, необходимо, используя линейку, измерить длину одной стороны треугольника. В середине стороны поставьте отметку, после чего противоположную вершину и середину отрезка соедините линией, которая называется медианой. Тот же самый алгоритм повторите со второй стороной треугольника, а затем и с третьей. Результатом вашей работы станут три медианы, которые пересекаются в одной точке, которая будет являться центром тяжести треугольника.

Если перед вами стоит задача, касающаяся того, как найти центр тяжести тела в форме равностороннего треугольника, то необходимо из каждой вершины провести высоту с помощью прямоугольной линейки. Центр тяжести в равностороннем треугольнике будет находиться на пересечении высот, медиан и биссектрис, поскольку одни и те же отрезки одновременно являются высотами, медианами и биссектрисами.

Координаты центра тяжести треугольника

Перед тем, как найти центр тяжести треугольника и его координаты, рассмотрим подробнее саму фигуру. Это однородная треугольная пластина, с вершинами А, В, С и соответственно, координатами: для вершины А - x1 и y1; для вершины В - x2 и y2; для вершины С - x3 и y3. При нахождении координат центра тяжести мы не будем учитывать толщину треугольной пластины. На рисунке ясно видно, что центр тяжести треугольника обозначен буквой Е – для его нахождения мы провели три медианы, на пересечении которых и поставили точку Е. Она имеет свои координаты: xE и yE.

Один конец медианы, проведенной из вершины А к отрезку В, обладает координатами x 1 , y 1 , (это точка А), а вторые координаты медианы получаем, исходя из того, что точка D (второй конец медианы) стоит посередине отрезка BC. Концы данного отрезка обладают известными нам координатами: B(x 2 , y 2) и C(x 3 , y 3). Координаты точки D обозначаем xD и yD . Исходя из следующих формул:

х=(Х1+Х2)/2; у=(У1+У2)/2

Определяем координаты середины отрезка. Получим следующий результат:

хd=(Х2+Х3)/2; уd=(У2+У3)/2;

D *((Х2+Х3)/2 , (У2+У3)/2).

Мы знаем, какие координаты характерны для концов отрезка АД. Также нам известны координаты точки Е, то есть, центра тяжести треугольной пластины. Также мы знаем, что центр тяжести расположен посередине отрезка АД. Теперь, применяя формулы и известные нам данные, мы можем найти координаты центра тяжести.

Таким образом, можно найти координаты центра тяжести треугольника, вернее, координаты центра тяжести треугольной пластины, учитывая то, что ее толщина нам неизвестна. Они равны среднему арифметическому однородных координат вершин треугольной пластины.

Автор : Возьмем тело произвольной формы. Можно ли подвесить его на нити так, чтобы оно после подвешивания сохранило свое положение (т.е. не стало поворачиваться) при любой начальной ориентации (рис. 27.1)?

Иными словами, существует ли такая точка, относительно которой сумма моментов сил тяжести, действующих на различные части тела, была бы равна нулю при любой ориентации тела в пространстве?

Читатель : По-моему, да. Такая точка называется центром тяжести тела.

Доказательство. Для простоты рассмотрим тело в виде плоской пластины произвольной формы произвольным образом ориентированное в пространстве (рис. 27.2). Возьмем систему координат х 0у с началом в центре масс – точке С , тогда х С = 0, у С = 0.

Представим это тело в виде совокупности большого числа точечных масс m i , положение каждой из которых задается радиусом-вектором .

По определению центра масс , а координата х С = .

Так как в принятой нами системе координат х С = 0, то . Умножим это равенство на g и получим

Как видно из рис. 27.2, |x i | – это плечо силы . Причем если х i > 0, то момент силы M i > 0, а если х j < 0, то M j < 0, поэтому с учетом знака можно утверждать, что для любого x i момент силы будет равен M i = m i gx i . Тогда равенство (1) эквивалентно равенству , где M i – момент силы тяжести . А это значит, что при произвольной ориентации тела сумма моментов сил тяжести, действующих на тело, будет равна нулю относительно его центра масс.

Чтобы рассматриваемое нами тело находилось в равновесии, к нему необходимо приложить в точке С силу Т = mg , направленную вертикально вверх. Момент этой силы относительно точки С равен нулю.

Поскольку наши рассуждения никак не зависели от того, как именно ориентировано тело в пространстве, мы доказали, что центр тяжести совпадает с центром масс, что и требовалось доказать.

Задача 27.1. Найти центр тяжести невесомого стержня длины l , на концах которого укреплены две точечные массы т 1 и т 2 .

т 1 т 2 l Решение. Будем искать не центр тяжести, а центр масс (так как это одно и то же). Введем ось х (рис. 27.3). Рис. 27.3
х С = ?

Ответ : на расстоянии от массы т 1 .

СТОП! Решите самостоятельно: В1–В3.

Утверждение 1. Если однородное плоское тело имеет ось симметрии, центр тяжести находится на этой оси.

Действительно, для всякой точечной массы m i , расположенной справа от оси симметрии, найдется такая же точечная масса , расположенная симметрично относительно первой (рис. 27.4). При этом сумма моментов сил .

Поскольку все тело можно представить разбитым на подобные пары точек, то суммарный момент сил тяжести относительно любой точки, лежащей на оси симметрии равен нулю, а значит, на этой оси находится и центр тяжести тела. Отсюда следует важный вывод: если тело имеет несколько осей симметрии, то центр тяжести лежит на пересечении этих осей (рис. 27.5).

Рис. 27.5

Утверждение 2 . Если два тела массами т 1 и т 2 соединены в одно, то центр тяжести такого тела будет лежать на отрезке прямой, соединяющей центры тяжести первого и второго тела (рис. 27.6).

Рис. 27.6 Рис. 27.7

Доказательство. Расположим составное тело так, чтобы отрезок, соединяющий центры тяжести тел был вертикальным. Тогда сумма моментов сил тяжести первого тела относительно точки С 1 равна нулю, и сумма моментов сил тяжести второго тела относительно точки С 2 равна нулю (рис. 27.7).

Заметим, что плечо силы тяжести любой точечной массы т i одно и то же относительно любой точки, лежащей на отрезке С 1 С 2 , а значит, и момент силы тяжести относительно любой точки, лежащей на отрезке С 1 С 2 , один и тот же. Следовательно, сил тяжести всего тела равен нулю относительно любой точки отрезка С 1 С 2 . Таким образом, центр тяжести составного тела лежит на отрезке С 1 С 2 .

Из утверждения 2 следует важный практический вывод, который четко сформулирован в виде инструкции.

Инструкция,

как искать центр тяжести твердого тела, если его можно разбить

на части, положения центров тяжести каждой из которых известно

1. Следует заменить каждую часть массой, расположенной в центре тяжести этой части.

2. Найти центр масс (а это то же самое, что и центр тяжести) полученной системы точечных масс, выбрав удобную систему координат х 0у , по формулам:

В самом деле, расположим составное тело так, чтобы отрезок С 1 С 2 был горизонтальным, и подвесим его на нитях в точках С 1 и С 2 (рис. 27.8,а ). Ясно, что тело будет находиться в равновесии. И это равновесие не нарушится, если мы заменим каждое тело точечными массами т 1 и т 2 (рис. 27.8,б ).

Рис. 27.8

СТОП! Решите самостоятельно: С3.

Задача 27.2. В двух вершинах равностороннего треугольника помещены шарики массы т каждый. В третьей вершине помещен шарик массы 2т (рис. 27.9,а ). Сторона треугольника а . Определить центр тяжести этой системы.

т 2т а Рис. 27.9
х С = ? у С = ?

Решение . Введем систему координат х 0у (рис. 27.9,б ). Тогда

,

.

Ответ : х С = а /2; ; центр тяжести лежит на половине высоты АD .

Учебник для 7 класса

§ 25.3. Как найти центр тяжести тела?

Напомним, что центром тяжести называют точку приложения силы тяжести. Рассмотрим, как найти на опыте положение центра тяжести плоского тела - скажем, вырезанной из картона фигуры произвольной формы (см. лабораторную работу № 12).

Подвесим картонную фигуру с помощью булавки или гвоздя так, чтобы она могла свободно вращаться вокруг горизонтальной оси, проходящей через точку О (рис. 25.4, а). Тогда эту фигуру можно рассматривать как рычаг с точкой опоры О.

Рис. 25.4. Как найти на опыте центр тяжести плоской фигуры

Когда фигура находится в равновесии, действующие на нее силы уравновешивают друг друга. Это сила тяжести F т, приложенная в центре тяжести фигуры Т, и сила упругости F упр, приложенная в точке О (эта сила приложена со стороны булавки или гвоздя).

Эти две силы уравновешивают друг друга только при условии, что точки приложения этих сил (точки Т и О) лежат на одной вертикали (см. рис. 25.4, а). В противном случае сила тяжести будет поворачивать фигуру вокруг точки О (рис. 25.4, б).

Итак, когда фигура находится в равновесии, центр тяжести лежит на одной вертикали с точкой подвеса О. Это и позволяет определить положение центра тяжести фигуры. Проведем с помощью отвеса вертикаль, проходящую через точку подвеса (синяя линия на рис. 25.4, в). На проведенной линии лежит центр тяжести тела. Повторим этот опыт при другом положении точки подвеса. В результате мы получим вторую линию, на которой лежит центр тяжести тела (зеленая линия на рис. 25.4, г). Следовательно, на пересечении этих линий находится искомый центр тяжести тела (красная точка Г на рис. 25.4, г).

Последние материалы раздела:

Можно ли есть сыр при похудении и какие существуют ограничения?
Можно ли есть сыр при похудении и какие существуют ограничения?

Сложно найти человека, равнодушного к сыру. Многообразие сыров и их сочетаемость, полезные свойства – это, пожалуй, целая наука. И ее стоит...

Диета чтобы похудеть на 3 кг
Диета чтобы похудеть на 3 кг

Лишние килограммы могут стать крупной неприятностью для любой женщины, изменить ее мир, стать причиной депрессии и плохого настроения. Чтобы все...

Как увеличить свои доходы
Как увеличить свои доходы

На каждом предприятии должны предусматриваться плановые мероприятия по увеличению прибыли. В общем плане эти мероприятия могут быть следующего...